Some results on the Weiss-Weinstein bound for conditional and unconditional signal models in array processing
نویسندگان
چکیده
In this paper, the Weiss-Weinstein bound is analyzed in the context of sources localization with a planar array of sensors. Both conditional and unconditional source signal models are studied. First, some results are given in the multiple sources context without specifying the structure of the steering matrix and of the noise covariance matrix. Moreover, the case of an uniform or Gaussian prior are analyzed. Second, these results are applied to the particular case of a single source for two kinds of array geometries: a non-uniform linear array (elevation only) and an arbitrary planar (azimuth and elevation) array.
منابع مشابه
Analytic Sequential Weiss-Weinstein Bounds
In this paper, we explore a sequential Bayesian bound for state-space models focusing on hybrid continuous and discrete random states. We provide an analytic recursion for the sequential Weiss–Weinstein (SWW) bound for linear state-space models with solutions for Gaussian, uniform, and exponential distributions as derived, as well as for a combination of these. We compare the SWW bound for disc...
متن کاملWeiss-Weinstein bound for MIMO radar with colocated linear arrays for SNR threshold prediction
Several works have suggested that a multi-input multi-output (MIMO) radar system offers improvement in terms of performance in comparison with classical phased-array radar. However, under the widely spread assumption of a uniform a priori distribution for one parameter of interest, there is no result concerning lower bounds on the meansquare error in the case of a Gaussian observation model wit...
متن کاملA class of Weiss-Weinstein bounds and its relationship with the Bobrovsky-Mayer-Wolf-Zakai bounds
A fairly general class of Bayesian ”large-error” lower bounds of the Weiss-Weinstein family, essentially free from regularity conditions on the probability density functions support, and for which a limiting form yields a generalized Bayesian Cramér-Rao bound (BCRB), is introduced. In a large number of cases, the generalized BCRB appears to be the Bobrovsky-Mayer-Wolf-Zakai bound (BMZB). Intere...
متن کاملWindowing Effects of Short Time Fourier Transform on Wideband Array Signal Processing Using Maximum Likelihood Estimation
During the last two decades, Maximum Likelihood estimation (ML) has been used to determine Direction Of Arrival (DOA) and signals propagated by the sources, using narrowband array signals. The algorithm fails in the case of wideband signals. As an attempt by the present study to overcome the problem, the array outputs are transformed into narrowband frequency bins, using short time Fourier tran...
متن کاملWindowing Effects of Short Time Fourier Transform on Wideband Array Signal Processing Using Maximum Likelihood Estimation
During the last two decades, Maximum Likelihood estimation (ML) has been used to determine Direction Of Arrival (DOA) and signals propagated by the sources, using narrowband array signals. The algorithm fails in the case of wideband signals. As an attempt by the present study to overcome the problem, the array outputs are transformed into narrowband frequency bins, using short time Fourier tran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Signal Processing
دوره 95 شماره
صفحات -
تاریخ انتشار 2014